Skip to main content

Cancer Sample Preparation with Micromachined Magnetic Sifter and Nanoparticles

Keywords: Tumor sample preparation, magnetic sifter, magnetic nanoparticles, enrichment and analysis of protein biomarkers and cancer cells, high-throughout.

Contact: Shan X. Wang
Phone: (650) 723-8671
Stanford University (?)

Description: Variations in sample preparation may contribute to major discrepancies in the quantity and type of biomolecules or cells identified by different laboratories, even though the same reagents and biosensors (or biochips) are employed. This is especially hampering our efforts to fight cancer as sample preparation is a prerequisite for cancer biomarker discovery, validation, and their use in molecular diagnosis and treatment of patients. This urgent need for cancer sample preparation requires innovative methods to bring about better and more affordable sample preparation tools. We have formed an interdisciplinary team with expertise from magnetics, nanotechnology, cancer clinical practice and research, biochemistry, and proteomics to work on a novel micromachined magnetic sifter and directly fabricated magnetic nanoparticles. The magnetic sifter can be used to separate and enrich cancer targets; including proteins and rare cells from raw samples. The utilization of precisely dimensioned structures, including the use of sub-nanometer control of quantum magnetic effects will enable high throughput, high capture yield, low impurities, and low cost. The technology is very unique because high magnetic field gradients (>1 Tesla/ 5m) and large flow rates (>1 mL/hour) are enabled by three-dimensional Si-based micromachining. The use of high-moment magnetic nanoparticles with distinctive shapes and controlled magnetic chain formation give rise to unprecedented capture and release efficiencies, cell damage minimization, enhanced characterization, and run-to-run reproducibility. The proposed project is organized in three aims: Specific Aim 1. Magnetic sifter for high efficiency capture and analysis of protein cancer markers and cancer cells: a) Construct a magnetic sifter with a high magnetic field gradient (>1 Tesla/ 5m) and large flow rate (>1 mL/hour) and demonstrate the efficient capture, release and analysis of protein cancer markers. b) Use magnetic sifter to capture and release NCI-H1650 lung cancer tumor cells cancer cells spiked into samples of human blood with an overall capture efficiency of >70%, while keeping cells viable. Specific Aim 2. Functionalization and characterization of novel magnetic nanoparticles for high efficiency high speed magnetic separation. Specific Aim 3. Magnetic sifter for rare cells capture and analysis from human blood. The utility of the grant includes drastically reducing post-separation analysis and enabling new investigations in areas where rare molecules and cell types are currently too difficult to obtain and analyze. Furthermore, separating protein and cancer markers from high concentration impurities in blood, with 1000-fold enrichment, will enable detection of low abundance cancer markers which are difficult to quantify with conventional technologies. We expect that the tools developed under this grant will have a great impact on the cancer research and treatment community.

Ooi et al, Effect of Magnetic Field Gradient on Effectiveness of the Magnetic Sifter for Cell Purification, IEEE Tran Magnetics, Jan 2013


Go to top